Language Recognition using Random Indexing
نویسندگان
چکیده
Random Indexing is a simple implementation of Random Projections with a wide range of applications. It can solve a variety of problems with good accuracy without introducing much complexity. Here we demonstrate its use for identifying the language of text samples, based on a novel method of encoding letter n-grams into high-dimensional Language Vectors. Further, we show that the method is easily implemented and requires little computational power and space. As proof of the method’s statistical validity, we show its success in a language-recognition task. On a difficult data set of 21,000 short sentences from 21 different languages, we achieve 97.8% accuracy, comparable to state-of-the-art methods.
منابع مشابه
Combination of random indexing based language model and n-gram language model for speech recognition
This paper presents the results and conclusion of a study on the introduction of semantic information through the Random Indexing paradigm in statistical language models used in speech recognition. Random Indexing is an alternative to Latent Semantic Analysis (LSA) that addresses the scalability problem of LSA. After a brief presentation of Random Indexing (RI), this paper describes, different ...
متن کاملA Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملA Distributional Semantics Approach to Simultaneous Recognition of Multiple Classes of Named Entities
Named Entity Recognition and Classification is being studied for last two decades. Since semantic features take huge amount of training time and are slow in inference, the existing tools apply features and rules mainly at the word level or use lexicons. Recent advances in distributional semantics allow us to efficiently create paradigmatic models that encode word order. We used Sahlgren et al’s...
متن کاملUnsupervised speaker indexing using anchor models and automatic transcription of discussions
We present unsupervised speaker indexing combined with automatic speech recognition (ASR) for speech archives such as discussions. Our proposed indexing method is based on anchor models, by which we define a feature vector based on the similarity with speakers of a large scale speech database. Several techniques are introduced to improve discriminant ability. ASR is performed using the results ...
متن کاملAutomatic Transcription of Discussions Using Unsupervised Speaker Indexing
We present unsupervised speaker indexing combined with automatic speech recognition (ASR) for speech archives such as discussions. Our proposed indexing method is based on anchor models, by which we define a feature vector based on the similarity with speakers of a large scale speech database, and we incorporate several techniques to improve discriminant ability. ASR is performed using the resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1412.7026 شماره
صفحات -
تاریخ انتشار 2014